首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织模糊CMAC网络的非线性系统鲁棒自适应跟踪控制
引用本文:王源, 胡寿松. 基于自组织模糊CMAC网络的非线性系统鲁棒自适应跟踪控制. 自动化学报, 2002, 28(6): 984-989.
作者姓名:王源  胡寿松
作者单位:1.南京航空航天大学自动化学院,南京
基金项目:国家自然科学重点基金,航空科学重点基金 (98Z510 0 2 ),博士点基金 ( 2 0 0 0 0 2 870 4 )资助
摘    要:基于自组织模糊CMAC(SOFCMAC)神经网络,提出了一种非线性模型参考神经网络增广逆系统鲁棒自适应跟踪控制方法.该方法的特点是通过S0FCMAC神经网络在线修正由于建模误差、不确定因素等引起的非线性系统逆误差,使得系统输出准确跟踪参考模型输出.SOFCMAC的权值调整规律由Lyapunov稳定性理论导出.文中证明了非线性闭环系统的稳定性.仿真例子表明了本文方法的有效性.

关 键 词:动态逆   非线性   CMAC   自适应控制
收稿时间:2000-12-12
修稿时间:2000-12-12

ROBUST ADAPTIVE TRACKING CONTROL FOR NONLINEAR SYSTEMS BASED ON SELF-ORGANIZING FUZZY CMAC NEURAL NETWORKS
WANG Yuan, HU Shou-Song. Robust Adaptive Tracking Control for Nonlinear Systems Based on Self-Organizing Fuzzy CMAC Neural Networks. ACTA AUTOMATICA SINICA, 2002, 28(6): 984-989.
Authors:WANG Yuan  HU Shou-Song
Affiliation:1. College of Automation,Nanjing University of Aeronaurics and Astronautics,Nanjing
Abstract:This paper presents a method of robust adaptive tracking control for nonlinear systems based on a self organizing fuzzy CMAC neural network. The on line learning while controlling neural network is used to adaptively regulate the error in the plant inversion which may be due to modeling uncertainties and disturbances in order to make the system outputs accurately track the outputs of the reference model. The updating rule of SOFCMAC weights is derived from Lyapunov stability theory. The stability of the designed system is proved. Simulation results demonstrate the effectiveness of the proposed method.
Keywords:Dynamic inversion   nonlinear   CMAC   adaptive control
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号