首页 | 本学科首页   官方微博 | 高级检索  
     


Dilute phase pneumatic conveying of whey protein isolate powders: Particle breakage and its effects on bulk properties
Affiliation:1. Department of Process and Chemical Engineering, University College Cork, Ireland;2. Dairy Processing Technology Centre (DPTC), Ireland;3. The Bernal Institute, University of Limerick, Ireland;4. School of Food and Nutritional Sciences, University College Cork, Ireland;5. Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
Abstract:Breakage of dairy powder during pneumatic conveying negatively affects the end-customer properties (scoop uniformity and reconstitution). A dilute phase pneumatic conveying system was built to conduct studies into this problem using whey protein isolate powder (WPI) as the test material. Effects of conveying air velocity (V), solid loading rate (SL), pipe bend radius (D), and initial particle size (d) on the level of attrition were experimentally studied. Four quality characteristics were measured before and after conveying: particle size distribution, tapped bulk density, flowability, and wettability. The damaged WPI agglomerates after conveying give rise to many porous holes exposed to the interstitial air. V is the most important input variable and breakage levels rise rapidly at higher airspeeds. The mean volume diameter D4,3] decreased by around 20% using the largest airspeed of 30 m/s. Powder breakage is also very sensitive to particle size. There appears to be a threshold size below which breakage is almost negligible. By contrast, SL and D show lesser influence on powder breakage. Reflecting the changes in particle size due to breakage, tapped bulk density increases whereas wettability decreases as a result of an increase in conveying air velocity. However, breakage does not show a significant effect on powder flowability as powder damage not only decreases particle size but also changes the particle’s surface morphology.
Keywords:Pneumatic conveying  Powder breakage  Wettability  Flowability  Whey protein isolate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号