首页 | 本学科首页   官方微博 | 高级检索  
     


Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene
Authors:Guangming Zeng  Zhen Li  Lin Tang  Mengshi Wu  Xiaoxia Lei  Yuanyuan Liu  Can Liu  Ya Pang  Yi Zhang
Affiliation:aCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China;bKey Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
Abstract:An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol–Au bond and horseradish peroxidase–streptavidin (HRP–SA) conjugates were labeled to the biotinylated detection probes through biotin–streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes. The amperometric current response to HRP-catalyzed reaction was linearly related to the common logarithm of the target nucleic acid concentration in the range of 1.0 × 10−15–1.0 × 10−10 M, with the detection limit of 1.2 × 10−16 M. In addition, the electrochemical biosensor exhibited high sensitivity, selectivity, stability and reproducibility.
Keywords:Gold nanoparticles  Water-soluble multiwalled carbon nanotubes  Poly (1  5-naphthalenediamine)  Cellobiose dehydrogenase gene  Electrochemical sensor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号