首页 | 本学科首页   官方微博 | 高级检索  
     


Following Chemical Charge Trapping in Pentacene Thin Films by Selective Impurity Doping and Wavelength‐Resolved Electric Force Microscopy
Authors:Louisa M Smieska  Vladimir A Pozdin  Justin L Luria  Richard G Hennig  Melissa A Hines  Chad A Lewis  John A Marohn
Affiliation:1. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA;2. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Abstract:Charge trapping is one of several factors that limit the performance of organic electronic materials, yet even in pentacene, a prototypical small‐molecule semiconductor, the precise chemical nature of charge trapping remains poorly understood. Here the effects of three chemical trap‐precursor candidates are examined by layering thin‐film pentacene transistors with different pentacene defect species. The resulting charge trapping is studied in each device via scanning‐probe electric force microscopy coupled with variable‐wavelength sample illumination. Firstly, it is found that layering with pentacen‐6(13H)‐one (PHO) readily produces uniform charge trapping everywhere in the transistor channel, as expected for an active blanket‐deposited trap‐precursor. However, layering with 6,13‐dihydropentacene (DHP) produces fewer, more‐isolated traps, closely resembling the surface potential distribution in pristine pentacene thin films. Secondly, the rates of trap‐clearing versus illuminating wavelength (trap‐clearing spectra) are measured, revealing enhanced trap‐clearing rates at wavelengths assigned to the absorption of either pentacene or the charged trap species. The trap‐clearing spectrum for the PHO‐layered sample closely resembles the spectrum obtained from pentacene aged in a working transistor, while the trap‐clearing spectrum for the DHP‐layered sample resembles the spectrum observed in pristine pentacene. We conclude that PHO competently creates traps in pentacene that match the expected trap‐clearing spectrum for degraded pentacene, while DHP does not, and that the chemical trap species in aged pentacene is very likely PHO+.
Keywords:organic field‐effect transistors  thin films  charge trapping  electric force microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号