首页 | 本学科首页   官方微博 | 高级检索  
     


Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent Cation–π Interaction: Toward Printed Electronics
Authors:Seung Yol Jeong  Sung Hun Kim  Joong Tark Han  Hee Jin Jeong  Soo Yeon Jeong  Geon‐Woong Lee
Affiliation:Graphene Hybrid World Class Laboratory, Nano Carbon Materials Research Group, Korea Electrotechnology Research Institute (KERI), Changwon, 641‐120, Korea
Abstract:A novel route to preparing highly concentrated and conductive reduced graphene oxide (RGO) in various solvents by monovalent cation–π interaction. Previously, the hydrophobic properties of high‐quality RGO containing few defects and oxygen moieties have precluded the formation of stable dispersion in various solvents. Cation–π interaction between monovalent cations, such as Na+ or K+, and six‐membered sp2 carbons on graphene were achieved by simple aging process of graphene oxide (GO) nanosheets dispersed in alkali solvent. The noncovalent binding forces introduced by the cation–π interactions were evident from the chemical shift of the sp2 peak in the solid 13C NMR spectra. Raman spectra and the IV characteristics demonstrated the interactions in terms of the presence of n‐type doping effect due to the adsorption of cations with high electron mobility (39 cm2/Vs). The RGO film prepared without a post‐annealing process displayed superior electrical conductivity of 97,500 S/m at a thickness of 1.7 μm. Moreover, mass production of GO paste with a concentration as high as 20 g/L was achieved by accelerating the cation–π interactions with densification process. This strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high‐quality RGO nanosheets.
Keywords:reduced graphene oxide nanosheets  cation‐π  interaction  electrical conductivity  doping  high concentration  printed electronics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号