首页 | 本学科首页   官方微博 | 高级检索  
     


Biofabricating Multifunctional Soft Matter with Enzymes and Stimuli‐Responsive Materials
Authors:Yi Liu  Jessica L. Terrell  Chen‐Yu Tsao  Hsuan‐Chen Wu  Vishal Javvaji  Eunkyoung Kim  Yi Cheng  Yifeng Wang  Rein V. Ulijn  Srinivasa R. Raghavan  Gary W. Rubloff  William E. Bentley  Gregory F. Payne
Affiliation:1. Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA;2. Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;3. Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA;4. Institute for Systems Research and, Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA;5. School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China;6. WestCHEM Department of Pure and Applied Chemistry, The University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
Abstract:Methods that allow soft matter to be fabricated with controlled structure and function would be beneficial for applications ranging from flexible electronics to regenerative medicine. Here, the assembly of a multifunctional gelatin matrix is demonstrated by triggering its self‐assembly and then enzymatically assembling biological functionality. Triggered self‐assembly relies on electrodeposition of the pH‐responsive hydrogelator, 9‐fluorenylmethoxycarbonyl‐phenylalanine (Fmoc‐Phe), in response to electrical inputs that generate a localized pH‐gradient. Warm solutions of Fmoc‐Phe and gelatin are co‐deposited and, after cooling to room temperature, a physical gelatin network forms. Enzymatic assembly employs the cofactor‐independent enzyme microbial transglutaminase (mTG) to perform two functions: crosslink the gelatin matrix to generate a thermally stable chemical gel and conjugate proteins to the matrix. To conjugate globular proteins to gelatin these proteins are engineered to have short lysine‐rich or glutamine‐rich fusion tags to provide accessible residues for mTG‐catalysis. Viable bacteria can be co‐deposited and entrapped within the crosslinked gelatin matrix and can proliferate upon subsequent incubation. These results demonstrate the potential for enlisting biological materials and mechanisms to biofabricate multifunctional soft matter.
Keywords:peptides  gelatin  microbial transglutaminase  quorum sensing  stimuli‐responsive materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号