首页 | 本学科首页   官方微博 | 高级检索  
     


Uncertainty modeling and robust minimax LQR control of multivariable nonlinear systems with application to hypersonic flight
Authors:Obaid Ur Rehman  Bar?? Fidan  Ian R Petersen
Affiliation:1. School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, Australia;2. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
Abstract:For a class of multi‐input and multi‐output nonlinear uncertainty systems, a novel approach to design a nonlinear controller using minimax linear quadratic regulator (LQR) control is proposed. The proposed method combines a feedback linearization method with the robust minimax LQR approach in the presence of time‐varying uncertain parameters. The uncertainties, which are assumed to satisfy a certain integral quadratic constraint condition, do not necessarily satisfy a generalized matching condition. The procedure consists of feedback linearization of the nominal model and linearization of the remaining nonlinear uncertain terms with respect to each individual uncertainty at a local operating point. This two‐stage linearization process, followed by a robust minimax LQR control design, provides a robustly stable closed loop system. To demonstrate the effectiveness of the proposed approach, an application study is provided for a flight control problem of an air‐breathing hypersonic flight vehicle (AHFV), where the outputs to be controlled are the longitudinal velocity and altitude, and the control variables are the throttle setting and elevator deflection. The proposed method is used to derive a linearized uncertainty model for the longitudinal motion dynamics of the AHFV first, and then a robust minimax LQR controller is designed, which is based on this uncertainty model. The controller is synthesized considering seven uncertain aerodynamic and inertial parameters. The stability and performance of the synthesized controller is evaluated numerically via single scenario simulations for particular cruise conditions as well as a Monte‐Carlo type simulation based on numerous cases. It is observed that the control scheme proposed in this paper performs better, especially from the aspect of robustness to large ranges of uncertainties, than some controller design schemes previously published in the literature. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Keywords:Nonlinear systems  feedback linearization  uncertainty modeling  robust control system design
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号