首页 | 本学科首页   官方微博 | 高级检索  
     

电力系统无功优化的多智能体粒子群算法研究
引用本文:邢林华,卢道远,陈冬沣,殷豪,陈思哲,陈智慧. 电力系统无功优化的多智能体粒子群算法研究[J]. 黑龙江电力, 2014, 36(5): 392-395
作者姓名:邢林华  卢道远  陈冬沣  殷豪  陈思哲  陈智慧
作者单位:1. 广东电网公司揭阳供电局,广东揭阳,522000
2. 广东工业大学自动化学院,广州,510006
基金项目:广东省自然科学基金项目,广东高校优秀青年创新人才培养计划项目资助,广东省电网公司科技项目
摘    要:为了更好地实现无功功率最优控制和提高电压质量,在现有基础上,提出了引用多智能体粒子群优化算法(MAPSO).该算法结合了JADE系统和粒子群优化技术,粒子间构建了三维球形环境.PSO种群中,每一个Agent相当于算法中的一个粒子,他们通过Agent间进行竞争与合作操作和自学习操作,吸收了PSO算法的进化机理,能够更快地,更精确地收敛到全局最优解.经IEEE 14节点系统校验,并且与基于Matlab的PSO算法进行比较,结果表明,该算法具有收敛速度快,计算精度高的优点。

关 键 词:电力系统  无功优化  粒子群算法  JADE  多Agent  MAS

Research on multi-agent particle swarm optimization algorithm for power system reactive power optimization
XING Linhua,LU Daoyuan,CHEN Dongfeng,YIN Hao,CHEN Sizhe,CHEN Zhihui. Research on multi-agent particle swarm optimization algorithm for power system reactive power optimization[J]. Heilongjiang Electric Power, 2014, 36(5): 392-395
Authors:XING Linhua  LU Daoyuan  CHEN Dongfeng  YIN Hao  CHEN Sizhe  CHEN Zhihui
Affiliation:XING Linhua, LU Daoyuan , CHEN Dongfeng , YIN Hao , CHEN Sizhe , CHEN Zhihui ( 1. Guangdong Grid Jieyang Power Supply Bureau, Jieyang 522000, China; 2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China)
Abstract:In order to realize optimal control of reactive power and enhancement of voltage quality, this paper pro- poses, on the basis of the existing algorithms. It is an algorithm combines JADE system and particle swarm optimization technology, and formulates the 3d spherical environment between particles. In PSO species, every Agent equals to a particle in algorithm. Through the competition between Agents and cooperative and auto-tuning operation, the evolution mechanism of PSO algorithm is absorbed to rapidly and accurately converge so as to get the global optimal solution. The algorithm is verified in IEEE 14 node system and is compared with PSO algorithm based on Maflab. The result shows that the algorithm enjoys advantages including rapid convergence and high calculation precision.
Keywords:power system  reactive power optimization  particle swarm algorithm  JADE  multi-agent  MAS
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号