首页 | 本学科首页   官方微博 | 高级检索  
     


Small-signal analysis of modulation characteristics in asemiconductor laser subject to strong optical injection
Authors:Simpson   T.B. Liu   J.M. Gavrielides   A.
Affiliation:JAYCOR, San Diego, CA;
Abstract:Injection locking of a semiconductor laser can induce major changes in the modulation characteristics of the laser. A small-signal analysis using the lumped element model shows that both the frequency and damping of the characteristic resonances of the coupled complex field and free carriers (gain medium) are modified. The detuning between the injected field and the free-running oscillating field, the amplitude of the injection field relative to the free-running field, the linewidth enhancement factor, the cavity photon and spontaneous carrier decay rates, and the field enhancement of the decay rate are all key parameters in determining the changes to the modulation characteristics. For a broad range of parameters, there is simultaneous enhancement of the modulation bandwidth and stable, locked operation. The enhancement is a cavity phenomena and does not occur in a traveling wave amplifier. It requires that the frequency of the locking field be detuned from the injection-modified frequency of the cavity resonance. This causes a resonant enhancement of the modulation sideband associated with the preferred frequency of the optical cavity. Bandwidth enhancements beyond the free-running laser limit are possible over a range of injection levels and injection frequency detunings
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号