首页 | 本学科首页   官方微博 | 高级检索  
     

基于卡尔曼滤波的WSNs节点定位研究
引用本文:陈维克,李文锋,首珩,袁兵,魏兰. 基于卡尔曼滤波的WSNs节点定位研究[J]. 武汉理工大学学报, 2007, 29(8): 112-116
作者姓名:陈维克  李文锋  首珩  袁兵  魏兰
作者单位:1. 武汉理工大学物流工程学院,武汉,430063;湖南冶金职业技术学院机械工程系,株洲,412000
2. 武汉理工大学物流工程学院,武汉,430063
3. 湖南铁道职业技术学院,株洲,412000
基金项目:国家自然科学基金;湖北省青年杰出人才基金;湖北省自然科学基金
摘    要:节点定位是无线传感器网络中的关键技术之一。在采用装备有GPS装置的移动信标-移动机器人、无人机的基础上,将加权最小二乘估计与扩展卡尔曼滤波(EKF)组合,进行未知节点定位。算法首先利用加权最小二乘估计(WLSE),获得无线传感器网络未知节点的初步位置,再用扩展卡尔曼滤波进一步提高定位精度。并且提出了加权因子的确定方法,同时,算法还提出了移动信标位置参与EKF迭代计算的最优排序方案。算法可以实现传感节点的低成本定位,可以达到较高的定位精度。仿真结果显示,算法与目前常用的最小二乘估计相比,未知节点的定位精度有较大的提高。算法应用RSSI测距方式,它还可应用于TDOA,TOA等基于测距的定位算法中,具有较普遍的应用意义。

关 键 词:无线传感器网络  节点定位  扩展卡尔曼滤波  移动信标  加权最小二乘估计
文章编号:1671-4431(2007)08-0112-05
修稿时间:2007-04-15

Research on Node Localization Based on Kalman Filter for WSNs
CHEN Wei-ke,LI Wen-feng,SHOU Heng,YUAN Bing,WEI Lan. Research on Node Localization Based on Kalman Filter for WSNs[J]. Journal of Wuhan University of Technology, 2007, 29(8): 112-116
Authors:CHEN Wei-ke  LI Wen-feng  SHOU Heng  YUAN Bing  WEI Lan
Affiliation:1, School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063,China;2. Department of Mechanical Engineering, Hunan MetaLlurgical Professional Technology College, Zhuzhou 412000 ,China;3. Hunan Railway Professional-Technology College,Zhuzhou 412000,China
Abstract:Localization of nodes was a key technology for application of wireless sensor network.A hybrid localization algorithm(HLA) was proposed based on mobile beacons,such as mobile robots and UVA,which were equipped with GPS for wireless sensor networks.The hybrid algorithm combines weighted least squares estimation with Extended-Kalman Filter(EKF).Firstly,the algorithm got an inaccurate position coordination of node by using weighted least squares estimation.Then the algorithm achieved an accurate localization of node by using Extended-Kalman Filter.An approach was proposed to determine the weight exponent.And an optimal sorting solution of beacon position was proposed for EKF iteration.This algorithm was low-cost.Simulation showed that the hybrid localization algorithm could achieve higher accurate than least squares estimation.In this paper,the algorithm was based on RSSI.In fact,the algorithm could be applied to other localization algorithm which was based on range-based method,such as TDOA,TOA.So it could be applied to many applications.
Keywords:wireless sensor networks  localization  extended-kalman filter  mobile beacon  weighted least squares estimation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号