首页 | 本学科首页   官方微博 | 高级检索  
     


Ramsey numbers and an approximation algorithm for the vertex cover problem
Authors:Burkhard Monien  Ewald Speckenmeyer
Affiliation:(1) Fachbereich 17, Theoretische Informatik, Universität Paderborn, Postfach 1621, D-4790 Paderborn, Federal Republic of Germany
Abstract:Summary We show two results. First we derive an upper bound for the special Ramsey numbers rk(q) where rk(q) is the largest number of nodes a graph without odd cycles of length bounded by 2k+1 and without an independent set of size q+1 can have. We prove 
$$r_k (q) leqq frac{k}{{k + {text{1}}}}q^{frac{{k + {text{1}}}}{k}}  + frac{{k + {text{2}}}}{{k + {text{1}}}}q$$
The proof is constructive and yields an algorithm for computing an independent set of that size. Using this algorithm we secondly describe an OV¦·¦E¦) time bounded approximation algorithm for the vertex cover problem, whose worst case ratio is 
$$Delta  leqq {text{2 - }}frac{{text{1}}}{{k + {text{1}}}}$$
, for all graphs with at most (2k+3)k(2k+2) nodes (e.g. DeltalE1.8, if ¦V¦lE146000).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号