首页 | 本学科首页   官方微博 | 高级检索  
     


A model for predicting fatigue crack growth behaviour of a low alloy steel at low temperatures
Authors:Baotong Lü  and Xiulin Zheng
Affiliation:

Department of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, P.R.C., China

Abstract:In the present study, a model to predict the fatigue crack growth (FCG) behaviour at low temperatures is proposed for a low alloy steel (16 Mn). The experimental results indicate that fatigue ductile-brittle transition (FDBT) occurs in 16 Mn steel and the FDBT temperature (TFDBT) is about 130 K. When T > TFDBT, the FCG mechanism in the intermediate region is the formation of ductile striation and the FCG rates decrease with decreasing temperature. When TTFDBT, the FCG mechanism changes into microcleavage and the fatigue fracture toughness Kfc of the steel decreases sharply. The FCG rates tend to increase as the temperature is further reduced. The test data of the FCG rates are well fitted by the formula developed by Zheng and Hirt. An approximate method to predict ΔKth of the steel at low temperatures is proposed and then a general expression of the FCG rates is given at temperatures ranging from room temperature to TFDBT. By means of the expressions proposed in this paper, the FCG rates at low temperatures can be predicted from the tensile properties if the endurance limit σ?1 and δkth, at room temperature are known. Finally, a model for FDBT is tentatively proposed. Using this model, one can predict TFDBT from the ductile-brittle transition curve determined from impact or slow bending tests of cracked Charpy specimens.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号