首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms
Authors:Fei Lv  Hao Liang  Qipeng Yuan  Chunfang Li
Affiliation:aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China;bBeijing Industrial Technician College, Beijing 100023, People's Republic of China
Abstract:The aim of this study was to evaluate the antimicrobial efficacy of selected plant essential oil (EO) combinations against four food-related microorganisms. Ten EOs were initially screened against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae using agar disk diffusion and broth dilution methods. The highest efficacy against all the tested strains was shown when testing the oregano EO. EOs of basil and bergamot were active against the Gram-positive bacteria (S. aureus and B. subtilis), while perilla EO strongly inhibited the growth of yeast (S. cerevisiae). The chemical components of selected EOs were also analyzed by GC/MS. Phenols and terpenes were the major antimicrobial compounds in oregano and basil EOs. The dominant active components of bergamot EO were alcohols, esters and terpenes. For perilla EO, the major active constituents were mainly ketones. The checkerboard method was then used to investigate the antimicrobial efficacy of EO combinations by means of the fractional inhibitory concentration index (FICI). Based on an overall consideration of antimicrobial activity, organoleptic impact and cost, four EO combinations were selected and their MIC values were listed as follows: oregano–basil (0.313–0.313 μl/ml) for E. coli, basil–bergamot (0.313–0.156 μl/ml) for S. aureus, oregano–bergamot (0.313–0.313 μl/ml) for B. subtilis and oregano–perilla (0.313–0.156 μl/ml) for S. cerevisiae. Furthermore, the mechanisms of the antimicrobial action of EO combinations to the tested organisms were studied by the electronic microscopy observations of the cells and the measurement of the release of cell constituents. The electron micrographs of damaged cells and the significant increase of the cell constituents' release demonstrated that all EO combinations affected the cell membrane integrity.
Keywords:Essential oils   Food-related microorganisms   Antimicrobial activity   GC/MS   Synergism   Action mechanisms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号