首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of the prediction of trace organic compound removal during ozonation of secondary effluents using tracer substances and second order rate kinetics
Authors:U Hübner  S KellerM Jekel
Affiliation:Technical University of Berlin, Chair of Water Quality Control, Str. des 17. Juni 135, 10623 Berlin, Germany
Abstract:The application of the RCT-concept for predicting the removal of trace organic compounds (TrOCs) in organic rich WWTP effluents is often problematic due to the fast ozone depletion with instantaneous ozone demand in the range of typically applied ozone dosages. In this study, the determination of OH-radical and ozone exposure from second order rate kinetics with two internal tracer substances was evaluated as alternative approach for these waters. Results from batch and semi-batch experiments showed a linear correlation of OH-radical exposure with ozone consumption, characterized by its slope indicating the formation efficiency of OH-radicals and a lag ozone consumption without significant formation of OH-radicals. Evaluation of data from the project PILOTOX on ozonation of secondary effluent confirmed reasonable prediction of ozone resistant compound removal from relative residual concentration of an internal tracer substance. In contrast, predicting the reduction of TrOCs by direct reactions with ozone from internal tracers was not feasible. Similar removal efficiencies for fast reacting compounds with different rate constants from kO3 = 104 M−1 s−1 to kO3 = 106 M−1 s−1 were observed indicating a limitation of the reaction by mass transfer. This effect was observed at low ozone dosages in semi-batch and pilot experiments as well as in batch experiments, where mass transfer from gas to liquid phase is not limiting. It is assumed that consumption of low ozone dosages is faster than sample homogenization in the batch reactors used. Thus, prediction of compound removal by direct reaction with ozone always needs to consider reactor design and geometry.
Keywords:Ozonation  Trace organic compounds  Secondary effluent  OH-radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号