首页 | 本学科首页   官方微博 | 高级检索  
     


Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites
Authors:Filitz Rainer  Kierzkowska Agnieszka M  Broda Marcin  Müller Christoph R
Affiliation:Department of Mechanical Engineering, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany.
Abstract:The reaction of CaO with CO(2) is a promising approach for separating CO(2) from hot flue gases. The main issue associated with the use of naturally occurring CaCO(3), that is, limestone, is the rapid decay of its CO(2) capture capacity over repeated cycles of carbonation and calcination. Interestingly, dolomite, a naturally occurring equimolar mixture of CaCO(3) and MgCO(3), possesses a CO(2) uptake that remains almost constant with cycle number. However, owing to the large quantity of MgCO(3) in dolomite, the total CO(2) uptake is comparatively small. Here, we report the development of a synthetic Ca-rich dolomite using a coprecipitation technique, which shows both a very high and a stable CO(2) uptake over repeated cycles of calcination and carbonation. To obtain such an excellent CO(2) uptake characteristic it was found to be crucial to mix the Ca(2+) and Mg(2+) on a molecular level, that is, within the crystalline lattice. For sorbents which were composed of mixtures of microscopic crystals of CaCO(3) and MgCO(3), a decay behavior similar to natural limestone was observed. After 15 cycles, the CO(2) uptake of the best sorbent was 0.51 g CO(2)/g sorbent exceeding the CO(2) uptake of limestone by almost 100%.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号