首页 | 本学科首页   官方微博 | 高级检索  
     


A 15 nm Ultra‐thin Body SOI CMOS Device' with Double Raised Source/Drain for 90 nm Analog Applications
Authors:Chang‐Hyun Park  Myung‐Hwan Oh  Hee‐Sung Kang  Ho‐Kyu Kang
Abstract:Fully‐depleted silicon‐on‐insulator (FD‐SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the singleraised (SR) and double‐raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self‐heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self‐heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a 1.1 µm2 6T‐SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra‐thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.
Keywords:Fully‐depleted SOI  Si selective epitaxial growth  double raised  single raised  series resistance  self‐heating  static noise margin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号