首页 | 本学科首页   官方微博 | 高级检索  
     

基于相似和差异双视角的高维数据属性约简
作者姓名:李元江  权金升  谭阳奕  杨田
作者单位:智能计算与语言信息处理湖南省重点实验室(湖南师范大学)
基金项目:湖南省自然科学优秀青年基金资助项目(2021JJ20037);
摘    要:针对数据维度过高、冗余信息过多导致维度灾难的问题,提出一种基于异同矩阵的高维属性约简算法(ARSDM)。该算法在区分矩阵的基础上加入对同类样本的相似度衡量,形成对所有样本的综合评估。首先,计算样本在每个属性下的距离,并基于这些距离得到同类相似度和异类差异度;其次,建立异同矩阵,形成对整个数据集的评价;最后,进行属性约简,即将异同矩阵的每一列求和,依次选择值最大的特征进行约简,并将相应样本对的行向量置为零向量。实验结果表明,与经典属性约简算法DMG(Discernibility Matrix based on Graph theory)、FFRS(Fitting Fuzzy Rough Sets)以及GBNRS(Granular Ball Neighborhood Rough Sets)相比,在分类回归树(CART)分类器下,ARSDM的平均分类准确率分别提高了1.07、6.48、8.92个百分点;在支持向量机(SVM)分类器下,ARSDM的平均分类准确率分别提高了1.96、11.96、12.39个百分点;运行效率上ARSDM优于GBNRS和FFRS。可见,ARSDM能够有效去除冗余信息...

关 键 词:异同矩阵  区分矩阵  属性约简  粗糙集  粒计算  数据挖掘
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号