首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进深度学习的图像敏感信息识别研究
作者姓名:李选臣
作者单位:陕西机电职业技术学院
摘    要:对网站图像敏感信息识别检测问题,提出一种基于改进深度学习的图像敏感信息识别方法。通过特征融合网络,将经全局优化后的区域检测网络与全局识别网络提取特征相融合,并引入注意力机制,对图像中包含敏感部位的区域进行加权聚焦,提高模型检测效率和准确性。实验证明,采用通过全局特征优化后的区域检测网络,平均检测精度提高1%,相较于SSD、Faster R-CNN等目标生成网络,平均检测精度高8.54%与10.63%,提取结果更精准;融合局部特征的全局识别网络,识别精度随着局部特征提取准确度上升而上升,当提取种类到达10种时,识别精度比未加入高1.8%;通过引入注意力机制,本模型检测准确率提升明显,当聚焦点数为7时,比未引入高0.7%;最终,相较于未包含局部特征的ResNet50网络、虽然未包含局部特征但结构更复杂的ResNet101网络,与虽然考虑局部特征,但未与全局特征进行融合的DMCNet网络,本模型检测准确率平均高出3.25%、2.15%和6%,且耗费时间较短,具有更高的鉴别力和检测效率。

关 键 词:图像识别  区域检测  全局分类  注意力机制  特征融合
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号