摘 要: | 针对目前方面级情感分析(ABSA)模型过多依赖关系较为稀疏的句法依赖树学习特征表示,导致模型学习局部信息能力不足的问题,提出了一种融合多窗口局部信息的ABSA模型MWGAT(combining Multi-Window local information and Graph ATtention network)。首先,通过多窗口局部特征学习机制学习局部上下文特征,并挖掘文本包含的潜在局部信息;其次,采用能够较好理解依赖树的图注意力网络(GAT)学习句法依赖树所表示的语法结构信息,并生成语法感知的上下文特征;最后,将这两种表示不同语义信息的特征融合,形成既包含句法依赖树的语法信息又包含局部信息的特征表示,从而便于分类器高效判别方面词的情感极性。在Restaurant、Laptop和Twitter这3个公开数据集上进行实验,结果表明与结合了句法依赖树的T-GCN(Type-aware Graph Convolutional Network)模型相比,所提模型的Macro-F1分数分别提高了2.48%、2.37%和0.32%。可见,所提模型能够有效挖掘潜在的局部信息,并更为精确地预测方面词的...
|