首页 | 本学科首页   官方微博 | 高级检索  
     


Ciliary neurotrophic factor potentiates the beta-cell inhibitory effect of IL-1beta in rat pancreatic islets associated with increased nitric oxide synthesis and increased expression of inducible nitric oxide synthase
Authors:KA Wadt  CM Larsen  HU Andersen  K Nielsen  AE Karlsen  T Mandrup-Poulsen
Affiliation:Steno Diabetes Center, Gentofte, Denmark.
Abstract:Proinflammatory cytokines are implicated as effector molecules in the pathogenesis of IDDM. Interleukin-6 (IL-6) alone or in combination with IL-1beta inhibits glucose-stimulated insulin release from isolated rat pancreatic islets by unknown mechanisms. Here we investigated 1) if the effects of IL-6 are mimicked by ciliary neurotrophic factor (CNTF), another member of the IL-6 family of cytokines signaling via gp130, 2) the possible cellular mechanisms for these effects, and 3) if islet endocrine cells are a source of CNTF. CNTF (20 ng/ml) potentiated IL-1beta-mediated (5-150 pg/ml) nitric oxide (NO) synthesis from neonatal Wistar rat islets by 31-116%, inhibition of accumulated insulin release by 34-49%, and inhibition insulin response to a 2-h glucose challenge by 31-36%. CNTF potentiated IL-1beta-mediated NO synthesis from RIN-5AH cells by 83%, and IL-1beta induced islet inducible NO-synthase (iNOS) mRNA expression fourfold. IL-6 (10 ng/ml) also potentiated IL-1beta-mediated NO synthesis and inhibition of insulin release, whereas beta-nerve growth factor (NGF) (5 or 50 ng/ml) had no effect. mRNA for CNTF was expressed in rat islets and in islet cell lines. In conclusion, CNTF is constitutively expressed in pancreatic beta-cells and potentiates the beta-cell inhibitory effect of IL-1beta in association with increased iNOS expression and NO synthesis, an effect shared by IL-6 but not by beta-NGF. These findings indicate that signaling via gp130 influences islet NO synthesis associated with iNOS expression. We hypothesize that CNTF released from destroyed beta-cells during the inflammatory islet lesion leading to IDDM may potentiate IL-1beta action on the beta-cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号