首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of loading rate on dynamic fracture initiation toughness of brittle materials
Authors:Y. Kim  Y. J. Chao
Affiliation:(1) Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:Numerical simulation is carried out to investigate the effect of loading rate on dynamic fracture initiation toughness including the crack-tip constraint. Finite element analyses are performed for a single edge cracked plate whose crack surface is subjected to uniform pressure with various loading rate. The first three terms in the Williams’ asymptotic series solution is utilized to characterize the crack-tip stress field under dynamic loads. The coefficient of the third term in Williams’ solution, A 3, was utilized as a crack tip constraint parameter. Numerical results demonstrate that (a) the dynamic crack tip opening stress field is well represented by the three term solution at various loading rate, (b) the loading rate can be reflected by the constraint, and (c) the constraint A 3 decreases with increasing loading rate. To predict the dynamic fracture initiation toughness, a failure criterion based on the attainment of a critical opening stress at a critical distance ahead of the crack tip is assumed. Using this failure criterion with the constraint parameter, A 3, fracture initiation toughness is determined and in agreement with available experimental data for Homalite-100 material at various loading rate.
Keywords:Elastic crack tip constraint  Dynamic loading rate  Fracture initiation toughness  Finite element analysis  Dynamic failure criterion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号