首页 | 本学科首页   官方微博 | 高级检索  
     


Plasma protein adsorption on biodegradable microspheres consisting of poly(D,L-lactide-co-glycolide), poly(L-lactide) or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition
Authors:M Lück  KF Pistel  YX Li  T Blunk  RH Müller  T Kissel
Affiliation:Department of Pharmaceutics, Biopharmaceutics and Biotechnology, The Free University of Berlin, Kelchstrasse 31, D-12169 Berlin, Germany.
Abstract:Biodegradable particulate systems have been considered as parenteral drug delivery systems. The adsorption of plasma proteins on micro- and nanoparticles is determined by the surface properties and may, in turn, strongly influence the biocompatibility and biodistribution of both carriers. In the present study the influence of the polymer composition and the production method of microspheres on the in vitro plasma protein adsorption were investigated using two-dimensional electrophoresis (2-DE). Microparticles were prepared from poly(l-lactide) (l-PLA), poly(d,l-lactide-co-glycolide) (PLGA), and ABA triblock copolymers containing hydrophilic poly(oxyethylene) (B-blocks) domains connected to hydrophobic polyesters (A-blocks). Two different microencapsulation methods were employed, namely the w/o/w emulsion solvent evaporation method and the spray-drying technique. It could be demonstrated that the polymer composition and, especially, the encapsulation technique, influenced the interactions with plasma proteins significantly. For example, the percentages of several apolipoproteins in the plasma protein adsorption patterns of spray-dried PLGA- and l-PLA-particles were distinctly higher when compared to the adsorption patterns of the particles produced by the w/o/w-technique. Some adsorbed proteins were found to be characteristic or even specific for particles produced by the same method or consisting of identical polymers. Polyvinyl alcohol used as stabilizer in the w/o/w-technique may decisively influence the surface properties relevant for protein adsorption. The plasma protein adsorption on particles composed of ABA copolymers was drastically reduced when compared to microspheres made from pure polyesters. The adsorption patterns of ABA-particles were dominated by albumin. The plasma protein adsorption patterns detected on the different microspheres are likely to affect their in vivo performance as parenteral drug delivery systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号