首页 | 本学科首页   官方微博 | 高级检索  
     


A time-based arc-length like method to remove step size effects during fracture propagation
Authors:Tim Hageman  Ren de Borst
Affiliation:Tim Hageman,René de Borst
Abstract:An arc-length like method is presented which alters the size of the time increment when simulating crack propagation problems. By allowing the time increment to change during the time step a constraint can be imposed, which is used to enforce the fracture to propagate a single element length per time step. This removes the effect of the (interface) element size on propagating fractures, and therefore allows smooth fracture propagation during the simulation. The benefits of the scheme are demonstrated for three cases: mode-I crack propagation in a double cantilever beam, a shear fracture including inertial and viscoplastic effects in the surrounding material, and a pressurized fracture inside a poroelastic material. These cases highlight the ability of this scheme to obtain more accurate and nonoscillatory results for the force–displacement relation, to remove numerically induced stepwise fracture propagation, and to allow for arbitrary propagation velocities. An added benefit is that plastic strains surrounding a fracture are no longer affected by the (interface) element size.
Keywords:adaptive time step  arc-length method  discontinuity  fracture propagation  plasticity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号