首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of a high performance MOSFET with a quantum wirestructure incorporating a periodically bent Si-SiO2 interface
Authors:Tanaka   J. Sawada   A.
Affiliation:Central Res. Lab., Hitachi Ltd., Tokyo;
Abstract:A MOSFET using a serrated quantum wire structure that produces one-dimensional electron confinement shows excellent subthreshold characteristics and enhanced drive capability compared to a conventional MOSFET with a flat Si-SiO2 interface. We studied the quantum wire structure with its periodically bent Si-SiO2 interface using simulations. The potential in the convex regions of the silicon is 0.34 V higher than that in the concave ones when the bending angle is 90°, the bending period is 100 nm, substrate doping is 3.0×10 17 cm-3, and a gate voltage is 0.1 V. Because of this increase in potential in the convex regions, electrons are confined in a narrow width of 13 nm in the convex regions. This 1-D electron confinement effect by the bent Si-SiO2 interface is clearly observed at low gate voltage and is reduced as the gate voltage becomes higher. Due to the confinement effect, drain current in the MOSFET with this quantum wire structure is 270 times higher than that of a MOSFET with a flat Si-SiO2 interface at a gate voltage of 0.05 V. In addition, the short-channel effect is more effectively suppressed in this MOSFET than in a conventional MOSFET
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号