首页 | 本学科首页   官方微博 | 高级检索  
     


Design, synthesis and evaluation of transition-state analogue inhibitors of Escherichia coli gamma-glutamylcysteine synthetase
Authors:N Tokutake  J Hiratake  M Katoh  T Irie  H Kato  J Oda
Affiliation:Institute for Chemical Research, Kyoto University, Japan.
Abstract:Phosphinic acid-, sulfoximine- and sulfone-based transition-state analogues were synthesized and evaluated as inhibitors of Escherichia coli gamma-glutamylcysteine synthetase. These compounds have a carboxyl function at the beta-carbon to the tetrahedral central hetero atom so as to mimic the carboxyl group of the attacking cysteine in the transition state. The phosphinic acid- and the sulfoximine-based compounds were found to be potent ATP-dependent inactivators, both showing a slow-binding kinetics with overall affinities and second-order inactivation rates of one to two orders of magnitude greater than those of L-buthionine (SR)-sulfoximine (L-BSO). The sulfone was a simple reversible inhibitor without causing ATP-dependent enzyme inactivation, but its affinity toward the enzyme was still five times greater than that of L-BSO, indicating that the beta-carboxyl function plays a key role in the recognition of the inhibitors by the enzyme. The sulfoximine with (S)-beta-carbon to the sulfur was synthesized stereoselectively, and the two diastereomers with respect to the chiral sulfur atom were separated as a cyclic sulfoximine derivative. The sulfoximine with R-configuration around the sulfur served as an extremely powerful ATP-dependent inactivator with an overall inhibition constant of 39 nM and an inactivation rate of 6750 M-1 s-1, which correspond to 1260-fold higher affinity and almost 1400-fold greater inactivation rate as compared with L-BSO. The sulfoximine with (S)-sulfur was a simple reversible inhibitor with an inhibition potency comparable to that of the sulfone. The synthesis and inhibition profile of the N-phosphoryl sulfoximine is also described.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号