首页 | 本学科首页   官方微博 | 高级检索  
     


Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants
Authors:Kleineidam Sybille  Schüth Christoph  Grathwohl Peter
Affiliation:Center for Applied Geoscience, University of Tübingen, Germany.
Abstract:Equilibrium sorption isotherms were measured for five different low-polarity organic compounds (benzene, trichloroethene, 1,2- and 1,4-dichlorobenzene, and phenanthrene) over a wide concentration range. The investigated sorbents can be grouped into the following three classes: (1) humic soil organic matter, which shows linear sorption isotherms (solely partitioning, as observed in the peat sample); (2) carbon materials, which were thermally altered (due to their natural history or industrial production) and thus contain a high specific surface area and exhibit nonlinear isotherms, and (3) pure engineered microporous materials (e.g., zeolites and activated carbon), where adsorption is solely due to a pore-filling process. Sorption of all compounds was fitted very well by the Polanyi-Dubinin-Manes (PDM) model, which for sorbents containing humic organic matter (e.g., peat) was combined with linear partitioning. Both the partitioning and the Polanyi-Dubinin-Manes model predict unique sorption isotherms of similar compounds if the solubility-normalized aqueous concentration is used. In addition, an inverse linear relationship between the distribution coefficient (Kd) and water solubility, which was very well confirmed by the data, is obtained. This also leads to unit-equivalent Freundlich sorption isotherms and explains the often observed apparent correlation between sorption capacity at a given concentration (e.g., Freundlich coefficient) and sorption nonlinearity (Freundlich exponent).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号