Abstract: | Voice activity detection (VAD) is used to detect speech and non-speech periods from observed speech signals. It is an important front-end technique for many speech technology applications. Many VAD methods have been proposed. However most of them have been applied under clean or noisy conditions. Only a few methods have been proposed for reverberant conditions, particularly under noisy reverberant conditions. We therefore need to understand the ill effects of noise and reverberation on speech to design an accurate and robust method of VAD under noisy reverberant conditions. The ill effects of noise and reverberation for speech can be regarded as the modulation transfer function (MTF) under noisy and reverberant conditions. Therefore, our study is based on the MTF concept to reduce the ill effects of noise and reverberation on speech, and propose a robust VAD method that we obtained in this study. Noise reduction and dereverberation were first applied to the temporal power envelope of the speech signal to restore the temporal power envelope with this method. Then, power thresholding as a VAD decision was designed based on the restored temporal power envelope. A method of estimating the signal to noise ratio (SNR) was proposed to accurately estimate the SNR in the noise reduction stage. Experiments under both artificial and realistic noisy reverberant conditions were carried out to evaluate the performance of the proposed method of VAD and it was compared with conventional VAD methods. The results revealed that the proposed method significantly outperformed the conventional methods under artificial and realistic noisy reverberant conditions. |