首页 | 本学科首页   官方微博 | 高级检索  
     


Unsupervided pattern recognition for the classification of EMG signals
Authors:CI Christodoulou  CS Pattichis
Affiliation:Department of Electronic Engineering, Queen Mary and Westfield College, University of London, U.K.
Abstract:The shapes and firing rates of motor unit action potentials (MUAP's) in an electromyographic (EMG) signal provide an important source of information for the diagnosis of neuromuscular disorders. In order to extract this information from EMG signals recorded at low to moderate force levels, it is required: i) to identify the MUAP's composing the EMG signal, ii) to classify MUAP's with similar shape, and iii) to decompose the superimposed MUAP waveforms into their constituent MUAP's. For the classification of MUAP's two different pattern recognition techniques are presented: i) an artificial neural network (ANN) technique based on unsupervised learning, using a modified version of the self-organizing feature maps (SOFM) algorithm and learning vector quantization (LVQ) and ii) a statistical pattern recognition technique based on the Euclidean distance. A total of 1213 MUAP's obtained from 12 normal subjects, 13 subjects suffering from myopathy, and 15 subjects suffering from motor neuron disease were analyzed. The success rate for the ANN technique was 97.6% and for the statistical technique 95.3%. For the decomposition of the superimposed waveforms, a technique using crosscorrelation for MUAP's alignment, and a combination of Euclidean distance and area measures in order to classify the decomposed waveforms is presented. The success rate for the decomposition procedure was 90%.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号