首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进万有引力优化的LSSVM模型在标签缺陷检测中的应用
引用本文:庄葛巍,张晓颖,张维平,高大智. 基于改进万有引力优化的LSSVM模型在标签缺陷检测中的应用[J]. 电测与仪表, 2016, 53(7): 89-94. DOI: 10.3969/j.issn.1001-1390.2016.07.016
作者姓名:庄葛巍  张晓颖  张维平  高大智
作者单位:1. 国网上海市电力公司电力科学研究院,上海,200051;2. 河北海纳电测仪器股份有限公司,河北秦皇岛,066004
摘    要:针对最小二乘支持向量机(LSSVM)在缺陷检测过程中的模型参数选择问题,提出了一种改进的万有引力搜索算法(IGSA)对模型参数进行优化,该算法有效地克服了标准GSA易陷入局部最优解且优化精度不高的缺点,显著提高了原算法中物体的探索能力与开发能力。通过利用UCI数据库的数据进行分类验证,相比交叉验证、标准GSA、遗传和粒子群优化的LSSVM,IGSA-LSSVM分类模型有效提高了分类正确率和模型的泛化能力。最后,把该模型应用于标签缺陷自动检测中,取得了良好的效果。

关 键 词:万有引力搜索算法  最小二乘支持向量机  分类模型  缺陷检测
收稿时间:2015-09-10
修稿时间:2015-11-20

LSSVM model optimized by improved Gravitation Search Algorithm and its application on label defectsSdetectingS
ZHUANG Kewei,ZHANG Xiaoying,Zhang Weiping and GAO Dazhi. LSSVM model optimized by improved Gravitation Search Algorithm and its application on label defectsSdetectingS[J]. Electrical Measurement & Instrumentation, 2016, 53(7): 89-94. DOI: 10.3969/j.issn.1001-1390.2016.07.016
Authors:ZHUANG Kewei  ZHANG Xiaoying  Zhang Weiping  GAO Dazhi
Affiliation:Shanghai Electric Power Research Institue,Shanghai ,ChinaHaina Power Measurement Instruments Inc,Shanghai Electric Power Research Institue,Shanghai ,ChinaHaina Power Measurement Instruments Inc,Haina Power Measuring Instruments Co.,Ltd,Haina Power Measuring Instruments Co.,Ltd
Abstract:In the light of the problems existed in selecting the parameters of LSSVM model in the process of defect detection, The Improved Gravitational Search Algorithm (IGSA) is brought in and applied to optimize the model parameters of LSSVM. The algorithm overcomes the shortcoming of standard GSA that is easy to fall into local optimum and has low accuracy and effectively improves the exploration ability and development ability of GSA. Experiments are carried out on the data sets from the UCI database, Compared with cross-validation, standard GSA, Genetic Algorithm and Particle Swarm Optimization, the IGSA has the better classification accuracy and generalization ability. Finally,this model is applied to the label defect detection with a good result.
Keywords:gravitational search algorithm  least squares vector machine  classification model  defect detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号