首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应稀疏表示的被动毫米波图像恢复
引用本文:成萍, 赵家群, 张春杰, 司锡才. 基于自适应稀疏表示的被动毫米波图像恢复[J]. 电波科学学报, 2011, 26(3): 533-538.
作者姓名:成萍  赵家群  张春杰  司锡才
作者单位:1.哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001;2. 哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
基金项目:国防基础科研基金(A2420061104-06);中央高校基本科研业务费专项资金(HEUCFR1016Z08241);中国博士后基金(20090450834);黑龙江省博士后基金(LBH-Z08241)
摘    要:为了克服傅立叶域和小波域正则化方法不能同时保持目标特征和有效滤除噪声的缺点,提出一种被动毫米波图像恢复的新方法。它利用稀疏表示表达信号灵活的特点,对逆滤波后的毫米波图像采用基于奇异值分解的K聚类(K-SVD)算法进行学习,自适应地得到图像恢复需要的基函数。与傅立叶域和小波域正则化方法相比,论文方法采用了自适应的处理方法,因此能够更好地保持目标特征,更有效地抑制噪声,进而更好地恢复图像。将论文方法用于被动毫米波仿真图像的恢复,得到了很好的结果。因此,它是一种有效的被动毫米波成像方法。

关 键 词:自适应稀疏表示  被动毫米波  图像恢复  K-SVD  去噪
收稿时间:2010-07-01

Passive millimeter wave image restoration based on adaptive sparse representation
CHENG Ping, ZHAO Jia-qun, ZHANG Chun-jie, SI Xi-cai. Passive millimeter wave image restoration based on adaptive sparse representation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(3): 533-538.
Authors:CHENG Ping  ZHAO Jia-qun  ZHANG Chun-jie  SI Xi-cai
Affiliation:1.College of Information and Communication Engineering, Harbin Engineering University, Harbin Heilongjiang 150001, China;2. College of Science, Harbin Engineering University, Harbin Heilongjiang 150001, China
Abstract:A novel passive millimeter wave image restoration method is proposed,which aims to overcome the shortcoming that Fourier and wavelet domain regularization methods can not de-noise effectively and maintain target features simultaneously.The new method takes advantage of sparse representation′s merit of representing signals flexibly.It learns from the millimeter wave image after inverse filtering by using K-clustering with singular value decomposition(K-SVD) algorithm to obtain basis functions adaptively for image restoration.Comparing with Fourier and wavelet domain regularization methods,the proposed method employs an adaptive method.So it can maintain target features better and de-noise more effectively,which leads to better image restoration.When the method was used in the restoration of simulated passive millimeter image,good result has been obtained.Therefore,it is an effective passive millimeter imaging method.
Keywords:adaptive sparse representation  passive millimeter wave  image restoration  K-SVD  de-noise
本文献已被 CNKI 等数据库收录!
点击此处可从《电波科学学报》浏览原始摘要信息
点击此处可从《电波科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号