首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering 2D Mesoporous Silica@MXene‐Integrated 3D‐Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO‐Augmented Bone Regeneration
Authors:Qianhao Yang  Haohao Yin  Tianming Xu  Daoyu Zhu  Junhui Yin  Yixuan Chen  Xiaowei Yu  Junjie Gao  Changqing Zhang  Yu Chen  Youshui Gao
Abstract:The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2C MXene wrapped with S‐nitrosothiol (R? SNO)‐grafted mesoporous silica with 3D‐printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)‐triggered photonic hyperthermia of MXene in the NIR‐II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone‐regeneration bioactivity, augmented by sufficient blood supply triggered by on‐demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.
Keywords:3D‐printed scaffolds  adjuvant therapy  bone regeneration  bone tumors  MXenes  nitric oxide generation  osteosarcoma therapy  tissue engineering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号