首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal Shock Synthesis of Nanocatalyst by 3D‐Printed Miniaturized Reactors
Authors:Yun Qiao  Yonggang Yao  Yang Liu  Chaoji Chen  Xizheng Wang  Geng Zhong  Dapeng Liu  Liangbing Hu
Abstract:High temperature synthesis and treatments are ubiquitous in chemical reactions and material manufacturing. However, conventional sintering furnaces are bulky and inefficient with a narrow temperature range (<1500 K) and slow heating rates (<100 K min?1), which are undesirable for many applications that require transient heating to produce ideal nanostructures. Herein, a 3D‐printed, miniaturized reactor featuring a dense micro‐grid design is developed to maximize the material contact and therefore acheive highly efficient and controllable heating. By 3D printing, a versatile, miniaturized reactor with microscale features can be constructed, which can reach a much wider temperature range (up to ≈3000 K) with ultrafast heating/cooling rates of ≈104 K s?1. To demonstrate the utility of the design, rapid and batch synthesis of Ru nanoparticles supported in ordered mesoporous carbon is performed by transient heating (1500 K, 500 ms). The resulting ultrafine and uniform Ru nanoparticles (≈2 nm) can serve as a cathode in Li‐CO2 batteries with good cycling stability. The miniaturized reactor, with versatile shape design and highly controllable heating capabilities, provides a platform for nanocatalyst synthesis with localized and ultrafast heating toward high temperatures that is otherwise challenging to achieve.
Keywords:3D printing  Li‐CO2 batteries  miniaturized reactors  nanocatalysts  thermal shock synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号