首页 | 本学科首页   官方微博 | 高级检索  
     


Quasi‐Heteroface Perovskite Solar Cells
Authors:Ningyu Ren  Bingbing Chen  Biao Shi  Pengyang Wang  Qiaojing Xu  Yucheng Li  Renjie Li  Xinghua Cui  Fuhua Hou  Tiantian Li  Qian Huang  Yuelong Li  Yi Ding  Guofu Hou  Xinliang Chen  Chengjun Zhu  Ying Zhao  Anders Hagfeldt  Xiaodan Zhang
Abstract:Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi‐heteroface PSCs (QHF‐PSCs) is designed by a double‐layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open‐circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built‐in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF‐PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform.
Keywords:band gap adjustment  carrier transport  evaporation  heteroface  perovskite solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号