首页 | 本学科首页   官方微博 | 高级检索  
     


Autonomous maritime collision avoidance: Field verification of autonomous surface vehicle behavior in challenging scenarios
Authors:D. K. M. Kufoalor,T. A. Johansen,E. F. Brekke,A. Heps  ,K. Trnka
Affiliation:D. K. M. Kufoalor,T. A. Johansen,E. F. Brekke,A. Hepsø,K. Trnka
Abstract:We present results from sea trials for an autonomous surface vehicle (ASV) equipped with a collision avoidance system based on model predictive control (MPC). The sea trials were performed in the North Sea as part of an ASV Challenge posed by Deltares through a Dutch initiative involving different authorities, including the Ministry of Infrastructure and Water Management, the Netherlands Coastguard, and the Royal Netherlands Navy. To allow an ASV to operate in a maritime environment governed by the International Regulations for Preventing Collisions at Sea (COLREGs), the ASV must be capable of complying with COLREGs. Therefore, the sea trials focused on verifying COLREGs‐compliant behavior of the ASV in different challenging scenarios using automatic identification system (AIS) data from other vessels. The scenarios cover situations where some obstacle vessels obey COLREGs and emergency situations where some obstacles make decisions that increase the risk of collision. The MPC‐based collision avoidance method evaluates a combined predicted collision and COLREGs‐compliance risk associated with each obstacle and chooses the ‘best’ way out of dangerous situations. The results from the verification exercise in the North Sea show that the MPC approach is capable of finding safe solutions in challenging situations, and in most cases demonstrates behaviors that are close to the expectations of an experienced mariner. According to Deltares’ report, the sea trials have shown in practice that the technical maturity of autonomous vessels is already more than expected.
Keywords:marine robotics  motion planning  obstacle avoidance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号