首页 | 本学科首页   官方微博 | 高级检索  
     


2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction
Authors:Tian Wen  Min Liu  Shumei Chen  Qiaohong Li  Yonghua Du  Tianhua Zhou  Chris Ritchie  Jian Zhang
Abstract:Ultrathin 2D materials possess unique properties that translate to enhanced efficiency as electrocatalysts, stimulating research toward methodologies that support their preparation. Herein, a two‐step strategy is reported that involves the preparation of the new boron imidazolate framework ( BIF‐73 ) which is subsequently utilized as a precursor to yield the crystalline 2D nanosheet material ( Fe@BIF‐73‐NS ) via post‐synthetic modification. This new electrocatalytic material stabilizes ultra‐small (Fe2O3) fragments resulting in an excellent electrocatalytic performance for the oxygen evolution reaction (OER: lower overpotential with 291 mV at the current density of 10 mA cm?2) and carbon dioxide reduction reaction (faradaic efficiency of CO reaching 88.6% at ?1.8 V vs Ag/AgCl) without the need for noble metals. Additionally, theoretical calculations and microscopy reveal that the superior OER performance can be attributed to the increased exposure of binding sites within the material to which the catalytically active Fe3+ centers are bound through a post‐synthetic modification procedure. A red‐shift of the Fermi level around the valence band is observed and is proposed to be a result of the aforementioned interactions. This work opens an avenue toward the development of 2D functional metal organic framework nanosheets for energy conversion applications.
Keywords:boron imidazolate frameworks  carbon dioxide reduction reaction  Fe(III)  oxygen evolution reaction  2D nanosheets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号