Hydrodynamics of longitudinally discontinuous,vertically double layered and partially covered rigid vegetation patches in open channel flow |
| |
Authors: | Naveed Anjum Norio Tanaka |
| |
Abstract: | The aim of this paper is to numerically investigate how the flow structures are affected through a longitudinally discontinuous and vertically two‐layered vegetation occupying half width of the channel, with steady flow rate and subcritical conditions. A three‐dimensional (3‐D) Reynolds stress turbulence model (RSM), incorporated by Computational Fluid Dynamics (CFD) code FLUENT, was first validated with the experimental data, and then used for simulation purpose. The results showed that the flow stream‐wise velocities within the gap regions are visibly slower than that in the vegetation patch regions. Along the cross section, the velocity in the vegetation region (VR) reduced significantly due to resistance offered by the vegetation, which affected the channel conveyance; as compared to the free (non‐vegetated) region. The flow instability in the lateral direction was triggered by the flow shear due to the presence of partly distributed vegetation, resulting in the formation of coherent vortices and exchange of momentum at the interface. The discharge percentage passing through the free region (FR) was found to be 144–525% larger than that passing through the VR. The flow resistance increased significantly with higher vegetation density, whereas it decreased when both the vegetation layers were submerged. Moreover, the flow characteristics profiles in large gaps were more stable than in small gaps. The turbulent kinetic energy (TKE) and turbulence intensity also increased significantly through the patch regions compared to that of the gap regions. The results indicated that the flow structures and the flow resistance are strongly influenced by partial and discontinuous vegetation. |
| |
Keywords: | 3D numerical model discontinuous vegetation flow resistance partial distribution turbulent flow structure |
|
|