首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitivity of river sediment transport and bridge scour to effects of flow,temperature, and sea level
Authors:Brian D Barkdoll  Jennie Tyrrell  Yang She  Jui Patankar
Abstract:Sediment transport has implications for activities such as fishing, flood control, scour countermeasures, and dredging through altered flow depths and sediment transport, bank erosion, and bridge scour. To estimate the changes in sediment transport and bridge scour, river discharge, water surface slope, water temperature, and tailwater depth (to simulate sea‐level rise) were altered in existing sediment transport and scour models. It was found that (a) in uniform flow upstream of sea‐level rise effects, sediment transport is sensitive to discharge but not to temperature; (b) in non‐uniform flow affected by sea‐level rise, sediment transport is sensitive to water surface slope and discharge but not to temperature; (3) the discharge value to restore the sediment transport rate existing before sea‐level rise is proportional to the water surface slope ratio to the fourth power; (4) the discharge value to restore the bed sediment size existing before sea‐level rise is proportional to the water surface slope ratio to the three‐fourth power; (5) abutment scour is weakly inversely proportional to the water surface slope but more strongly proportional to the discharge in a logarithmic relation; (6) pier scour is weakly proportional to the water surface slope but more strongly proportional to the discharge in a logarithmic relation; and (7) the discharge to restore both abutment and pier scour depths to their original values prior to sea‐level rise is proportional to the water surface slope ratio to the 9/25th power. Full equations for each of these relationships are given in the article. These relationships can be used for future application and planning purposes.
Keywords:erosion  flooding  open‐channel hydraulics  weather
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号