首页 | 本学科首页   官方微博 | 高级检索  
     


Platelet Membrane‐Camouflaged Magnetic Nanoparticles for Ferroptosis‐Enhanced Cancer Immunotherapy
Authors:Qin Jiang  Kuang Wang  Xingyu Zhang  Boshu Ouyang  Haixia Liu  Zhiqing Pang  Wuli Yang
Abstract:Although cancer immunotherapy has emerged as a tremendously promising cancer therapy method, it remains effective only for several cancers. Photoimmunotherapy (e.g., photodynamic/photothermal therapy) could synergistically enhance the immune response of immunotherapy. However, excessively generated immunogenicity will cause serious inflammatory response syndrome. Herein, biomimetic magnetic nanoparticles, Fe3O4‐SAS @ PLT, are reported as a novel approach to sensitize effective ferroptosis and generate mild immunogenicity, enhancing the response rate of non‐inflamed tumors for cancer immunotherapy. Fe3O4‐SAS@PLT are built from sulfasalazine (SAS)‐loaded mesoporous magnetic nanoparticles (Fe3O4) and platelet (PLT) membrane camouflage and triggered a ferroptotic cell death via inhibiting the glutamate‐cystine antiporter system Xc? pathway. Fe3O4‐SAS @ PLT‐mediated ferroptosis significantly improves the efficacy of programmed cell death 1 immune checkpoint blockade therapy and achieves a continuous tumor elimination in a mouse model of 4T1 metastatic tumors. Proteomics studies reveal that Fe3O4‐SAS @ PLT‐mediated ferroptosis could not only induce tumor‐specific immune response but also efficiently repolarize macrophages from immunosuppressive M2 phenotype to antitumor M1 phenotype. Therefore, the concomitant of Fe3O4‐SAS @ PLT‐mediated ferroptosis with immunotherapy are expected to provide great potential in the clinical treatment of tumor metastasis.
Keywords:ferroptosis  immunotherapy  macrophage repolarization  magnetic nanoparticles  platelet membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号