首页 | 本学科首页   官方微博 | 高级检索  
     


From Mesostructured Wurtzite ZnS‐Nanowire/Amine Nanocomposites to ZnS Nanowires Exhibiting Quantum Size Effects: A Mild‐Solution Chemistry Approach
Authors:W‐T Yao  S‐H Yu  Q‐S Wu
Affiliation:Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
Abstract:Mesostructured wurtzite ZnS‐nanowire‐bundle/amine nanocomposites displaying remarkable quantum size effects are synthesized by using a mild‐solution reaction using different amines, such as n‐butylamine, ethylamine, and tetraethylenepentamine, Zn(NO3)2·6 H2O, and CS(NH2)2 or Na2S·9 H2O as the precursors at temperatures ranging from room temperature to 180 °C. A possible mechanism for the shape‐controlled growth of ZnS nanowires and nanocomposites is proposed. Increasing the reaction temperature or dispersing the composite in acetic acid or NaOH solution leads to the destruction of the periodic structure and the formation of individual wurtzite nanowires and their aggregates. The nanowire/amine composites and individual wurtzite nanowires both display obvious quantum size effects. Strong band‐edge emission is observed for the wurtzite ZnS nanowires after removal of the amine. The optical properties of these nanocomposites and nanowires are strongly related to the preparation conditions and can be finely tuned. This technique provides a unique approach for fabricating highly oriented wurtzite ZnS semiconductor nanowires, and can potentially be extended to other semiconducting systems.
Keywords:Hybrid materials  inorganic–  organic  Mesostructured materials  Nanocomposites  Nanowires  semiconductor  Solvothermal synthesis  Wurtzite  Zinc sulfide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号