首页 | 本学科首页   官方微博 | 高级检索  
     


In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries
Authors:Z Wen  Q Wang  Q Zhang  J Li
Affiliation:1. Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China);2. College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100039 (P.R. China)
Abstract:A novel mesoporous‐nanotube hybrid composite, namely mesoporous tin dioxide (SnO2) overlaying on the surface of multiwalled carbon nanotubes (MWCNTs), was prepared by a simple method that included in situ growth of mesoporous SnO2 on the surface of MWCNTs through hydrothermal method utilizing Cetyltrimethylammonium bromide (CTAB) as structure‐directing agents. Nitrogen adsorption–desorption, X‐ray diffraction and transmission electron microscopy analysis techniques were used to characterize the samples. It was observed that a thin layer tetragonal SnO2 with a disordered porous was embedded on the surface of MWCNTs, which resulted in the formation of a novel mesoporous‐nanotube hybrid composite. On the base of TEM analysis of products from controlled experiment, a possible mechanism was proposed to explain the formation of the mesoporous‐nanotube structure. The electrochemical properties of the samples as anode materials for lithium batteries were studied by cyclic voltammograms and Galvanostatic method. Results showed that the mesoporous‐tube hybrid composites displayed higher capacity and better cycle performance in comparison with the mesoporous tin dioxide. It was concluded that such a large improvement of electrochemical performance within the hybrid composites may in general be related to mesoporous‐tube structure that possess properties such as one‐dimensional hollow structure, high‐strength with flexibility, excellent electric conductivity and large surface area.
Keywords:Batteries  Carbon nanotubes  multiwalled  Composite materials  Mesoporous materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号