首页 | 本学科首页   官方微博 | 高级检索  
     


High Electron Mobility and Ambipolar Charge Transport in Binary Blends of Donor and Acceptor Conjugated Polymers
Authors:A Babel  Y Zhu  K‐F Cheng  W‐C Chen  S?A Jenekhe
Affiliation:1. Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington 98195‐1750 (USA);2. Institute of Polymer Science and Engineering, Department of Chemical Engineering, National Taiwan University, Taipei, 106 (Taiwan)
Abstract:High electron mobility and ambipolar charge transport are observed in phase‐separated binary blends of n‐type poly(benzobisimidazobenzophenanthroline) (BBL) with p‐type polymer semiconductors, poly(thiophene‐2,5‐diyl)‐alt‐(2,3‐diheptylquinoxaline‐5,8‐diyl)] (PTHQx) and poly(10‐hexylphenoxazine‐3,7‐diyl‐alt‐3‐hexyl‐2,5‐thiophene) (POT). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show phase‐separated domains of 50–300 nm in the binary blend thin films. The TEM images and electron diffraction of BBL/PTHQx blends show the growth of single‐crystalline phases of PTHQx within the BBL matrix. A relatively high electron mobility (1.0 × 10–3 cm2 V–1 s–1) that is constant over a wide blend‐composition range is observed in the PTHQx blend field‐effect transistors (FETs). Ambipolar charge transport is observed in both blend systems at a very high concentration of the p‐type semiconductor (≥90 wt % PTHQx or ≥80 wt % POT). Ambipolar charge transport is exemplified by an electron mobility of 1.4 × 10–5 cm2 V–1 s–1 and a hole mobility of 1.0 × 10–4 cm2 V–1 s–1 observed in the 98 wt % PTHQx blend FETs. These results show that ambipolar charge transport and the associated carrier mobilities in blends of conjugated polymer semiconductors have a complex dependence on the blend composition and the phase‐separated morphology.
Keywords:Conjugated polymers  Electron transport  Semiconductors  polymer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号