首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of liquid flow distribution on the behaviour of a trickle bed reactor
Authors:V Staněk  J Hanika  V Hlavá?ek  O Trnka
Affiliation:Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol, Czechoslovakia
Abstract:A mathematical model has been formulated of the effect of flow distribution of the liquid phase carrying a dissolved reactant on the progress of an nth order, irreversible, catalytic reaction with heat effects in an adiabatic trickle bed reactor. The model has been stated in terms of the density of irrigation, temperature and concentration of the reactant in the liquid, all treated as spatially distributed variables. Provisions have been made to account for the existence of the flow down the surface of the wall, which has no catalytic effect.Local concentration and temperature have been proven to be coupled by the invariant T + Uγc = γU. The same invariant governs also local concentration and temperature of the wall flow. Mathematically, the model is represented by a coupled set of nonlinear parabolic partial differential equations enabling concentration and temperature fields to be obtained for an arbitrary type of liquid distribution and intensity of the wall flow.Numerical solutions have been obtained by the finite-difference method simulating reactors irrigated by liquid distributors as central discs of different radii, or a central annulus, and strongly exothermic reactions with the reaction order ranging between 0.1 and 2. Numerical results have shown the effect of liquid distribution on the overall reaction conversion to be very complex. Optimum initial distribution varies depending on the reaction order as well as the required degree of conversion. In general, however, the entrance region flow pattern may play a significant role in affecting especially reactions exhibiting kinetics close to zero order (hydrogenations). The effect of the wall flow has been found unambigously adverse to reaching high conversions and of increasing importance for low order reactions.
Keywords:Author to whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号