首页 | 本学科首页   官方微博 | 高级检索  
     


Improved Approximate Detection of Duplicates for Data Streams Over Sliding Windows
Authors:Hong Shen  Yu Zhang
Affiliation:(1) Department of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, China;(2) School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia
Abstract:Detecting duplicates in data streams is an important problem that has a wide range of applications. In general,precisely detecting duplicates in an unbounded data stream is not feasible in most streaming scenarios,and,on the other hand,the elements in data streams are always time sensitive. These make it particular significant approximately detecting duplicates among newly arrived elements of a data stream within a fixed time frame. In this paper,we present a novel data structure,Decaying Bloom Filter(DBF),as an extension of the Counting Bloom Filter,that effectively removes stale elements as new elements continuously arrive over sliding windows. On the DBF basis we present an efficient algorithm to approximately detect duplicates over sliding windows. Our algorithm may produce false positive errors,but not false negative errors as in many previous results. We analyze the time complexity and detection accuracy,and give a tight upper bound of false positive rate. For a given space G bits and sliding window size W,our algorithm has an amortized time complexity of O((G/W))~(1/2). Both analytical and experimental results on synthetic data demonstrate that our algorithm is superior in both execution time and detection accuracy to the previous results.
Keywords:data stream  duplicate detection  bloom filter  approximate query  sliding window
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《计算机科学技术学报》浏览原始摘要信息
点击此处可从《计算机科学技术学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号