首页 | 本学科首页   官方微博 | 高级检索  
     

一种结合人工蜂群和K-均值的混合聚类算法
引用本文:毕晓君,宫汝江. 一种结合人工蜂群和K-均值的混合聚类算法[J]. 计算机应用研究, 2012, 29(6): 2040-2042
作者姓名:毕晓君  宫汝江
作者单位:哈尔滨工程大学 信息与通信工程学院,哈尔滨,150001
摘    要:传统的K-均值聚类算法虽然收敛速度快,但由于过度依赖初始聚类中心,算法的鲁棒性较差。为此,提出了一种改进人工蜂群算法与K-均值相结合的混合聚类方法,将改进人工蜂群算法能调节全局寻优能力与局部寻优能力的优点与K-均值算法收敛速度快的优点相结合,来提高算法的鲁棒性。实验表明,该算法不仅克服了传统K-均值聚类算法稳定性差的缺点,而且聚类效果也有了明显改善。

关 键 词:人工蜂群  聚类算法  K-均值

Hybrid clustering algorithm based on artificial bee colony and K-means algorithm
BI Xiao-jun,GONG Ru-jiang. Hybrid clustering algorithm based on artificial bee colony and K-means algorithm[J]. Application Research of Computers, 2012, 29(6): 2040-2042
Authors:BI Xiao-jun  GONG Ru-jiang
Affiliation:College of Information & Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:The traditional K-means clustering algorithm is too dependent on the initial clustering centers. With regards to this, this paper proposed a mixed clustering method based on the improvement artificial colony algorithm and the K-means algorithm. The new method combined the advantages of regulating ability of global optimization and local optimization with rapid convergence of K-means clustering algorithm to improve the robustness of the algorithm. Experiments show that the clustering result of the new method is significantly improved, not only the stability.
Keywords:artificial bee colony   clustering algorithm   K-means
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号