首页 | 本学科首页   官方微博 | 高级检索  
     

基于选择和变异机制的蛙跳FCM算法
引用本文:赵小强,刘悦婷. 基于选择和变异机制的蛙跳FCM算法[J]. 计算机应用研究, 2012, 29(6): 2068-2071
作者姓名:赵小强  刘悦婷
作者单位:1. 兰州理工大学 电气工程与信息工程学院,兰州 730050;甘肃省工业过程先进控制重点实验室,兰州730050
2. 兰州理工大学 电气工程与信息工程学院,兰州,730050
基金项目:甘肃省支撑计划资助项目(090GKCA034);甘肃省自然科学基金资助项目(0916RJZA017,1112RJZA028)
摘    要:为了改进模糊C-均值(FCM)聚类算法对初始值和噪声数据敏感,且易陷入局部极小值的缺点,提出一种基于选择和变异机制的蛙跳FCM算法(SMSFLA-FCM)。该算法首先将线性递减的惯性权重引入蛙跳算法的更新策略中,按照一定的概率选择适应度值较优的青蛙代替较差青蛙,并对每只青蛙个体以不同的概率变异;再用改进后的蛙跳算法求得最优解作为FCM算法的初始聚类中心;然后利用FCM优化初始聚类中心;最后求得全局最优解,从而有效克服了FCM算法的缺点。人造数据和经典数据集的实验结果表明,SMSFLA-FCM与SF-LA-FCM和FCM聚类算法相比,提高了算法的寻优能力,且迭代次数更少,聚类效果更好。

关 键 词:模糊C-均值聚类  蛙跳算法  选择和变异机制  聚类分析  数据挖掘

Fuzzy clustering algorithm based on selection and mutation mechanism shuffled frog leaping algorithm
ZHAO Xiao-qiang,LIU Yue-ting. Fuzzy clustering algorithm based on selection and mutation mechanism shuffled frog leaping algorithm[J]. Application Research of Computers, 2012, 29(6): 2068-2071
Authors:ZHAO Xiao-qiang  LIU Yue-ting
Affiliation:1. College of Electrical & Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China
Abstract:Because of the problems such as the sensitivity to initial value and noise data with the fuzzy C-means(FCM)clustering algorithm and its ready occurrence of local minimum,this paper presented a fuzzy C-means clustering based on selection and mutation mechanism shuffled frog leaping algorithm.This algorithm introduced the linear decreasing inertia weight to correct the poor frog update strategy.Then it selected the frog with better fitness value to substitute the poor one,and made very frog to mutate with different probability.The optimal solution obtained with SMSFLA with strong global searching ability was taken as initial clustering centers of FCM algorithm to optimize initial clustering centers,so as to get the global optimum and overcome the shortcoming of the FCM algorithm.The results of experiment on the artificial and real data show that compared with the SFLA-FCM and FCM clustering algorithm,the new algorithm(SMSFLA-FCM)optimization ability would be stronger,the number of iterations less,and the clustering efficiency better.
Keywords:fuzzy C-means clustering   shuffled frog leaping algorithm(SFLA)   selection and mutation mechanism   cluster analysis   data mining
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号