首页 | 本学科首页   官方微博 | 高级检索  
     


Conceptual robustness in simultaneous engineering: An extension of Taguchi's parameter design
Authors:Tzyy-Shuh Chang  Allen C. Ward  Jinkoo Lee  Edwin H. Jacox
Affiliation:(1) Design Laboratory, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109 Ann Arbor, MI;(2) Department of Electrical Engineering and Computer Science, University of Michigan, USA
Abstract:Simultaneous engineering processes involve multifunctional teams; team members simultaneously make decisions about many parts of the product-production system and aspects of the product life cycle. This paper argues that such simultaneous distributed decisions should be based on communications about sets of possibilities rather than single solutions. By extending Taguchi's parameter design concepts, we develop a robust and distributed decision-making procedure based on such communications. The procedure shows how a member of a design team can make appropriate decisions based on incomplete information from the other members of the team. More specifically, it (1) treats variations among the designs considered by other members of the design team asconceptual noise; (2) shows how to incorporate such noises into decisions that are robust against these variations; (3) describes a method for using the same data to provide preference information back to the other team members; and (4) provides a procedure for determining whether to release theconceptually robust design or to wait for further decisions by others. The method is demonstrated by part of a distributed design process for a rotary CNC milling machine. While Taguchi's approach is used as a starting point because it is widely known, these results can be generalized to use other robust decision techniques.
Keywords:Engineering design  Simultaneous engineering  Concurrent engineering  Robust design  Distributed optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号