首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度粒子群算法的细菌觅食算法
引用本文:麦雄发,李 玲. 基于梯度粒子群算法的细菌觅食算法[J]. 计算机应用研究, 2012, 29(11): 4131-4133
作者姓名:麦雄发  李 玲
作者单位:1. 广西师范学院 a. 数学科学学院 b. 科学计算与智能信息处理广西高校重点实验室,南宁,530001
2. 广西师范学院 继续教育学院,南宁,530001
基金项目:广西教育厅科研项目(201106LX310)。
摘    要:针对细菌觅食算法在优化过程中环境感知能力较弱且容易陷入局部极值的缺陷,将梯度粒子群算法的基本思想引入细菌觅食算法中,改进原算法的收敛速度和收敛能力,并据此提出了基于梯度粒子群算法的细菌觅食算法GPSO-BFA。该算法既利用了细菌觅食算法出色的全局搜索能力,又借助梯度粒子群算法的快速局部寻优能力,很好地将两者的优势结合在一起。基于六个高维Benchmark函数的实验结果显示,该算法在收敛速度和精度方面都优于其他四种细菌觅食算法。

关 键 词:细菌觅食算法  梯度粒子群优化  混合优化算法

Bacterial foraging algorithm based on gradient particle swarm optimization algorithm
MAI Xiong-f,LI Ling. Bacterial foraging algorithm based on gradient particle swarm optimization algorithm[J]. Application Research of Computers, 2012, 29(11): 4131-4133
Authors:MAI Xiong-f  LI Ling
Affiliation:a. School of Mathematical Sciences, b. Key Lab of Scientific computing & intelligent information processing in Universities of Guangxi, c. School of Continuing Education, Guangxi Teachers Education University, Nanning 530001, China
Abstract:To overcome the drawbacks of bacterial foraging algorithm for the optimization process, that the weak ability to perceive the environment and vulnerable to perception of local extreme. This article will merge the idea of GPSO algorithm into the bacterial foraging to improve the speed and convergence capabilities of BFA and according, this paper presented a bacterial foraging algorithm based on gradient particle swarm optimization GPSO-BFA. The presented hybrid method incorporates the advantages of the excellent global searching of the BFA and the local speedy convergence of the gradient method. Simulation results on six benchmark functions show that the proposed algorithm is superior to the other 4 kinds of bacterial foraging algorithm.
Keywords:bacterial foraging algorithm(BFA)  gradient particle swarm optimization algorithm(GPSO)  hybrid optimization algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号