基于分布式学习的大规模网络入侵检测算法 |
| |
作者姓名: | 刘衍珩 田大新 余雪岗 王健 |
| |
作者单位: | 吉林大学,计算机科学与技术学院,吉林,长春,130012;吉林大学,符号计算与知识工程教育部重点实验室,吉林,长春,130012 |
| |
基金项目: | 国家自然科学基金No.60573128,国家教育部高校博士点基金No.20060183043~~ |
| |
摘 要: | 计算机网络的高速发展,使处理器的速度明显低于骨干网的传输速度,这使得传统的入侵检测方法无法应用于大规模网络的检测.目前,解决这一问题的有效办法是将海量数据分割成小块数据,由分布的处理节点并行处理.这种分布式并行处理的难点是分割机制,为了不破坏数据的完整性,只有采用复杂的分割算法,这同时也使分割模块成为检测系统新的瓶颈.为了克服这个问题,提出了分布式神经网络学习算法,并将其用于大规模网络入侵检测.该算法的优点是,大数据集可被随机分割后分发给独立的神经网络进行并行学习,在降低分割算法复杂度的同时,保证学习结果的完整性.对该算法的测试实验首先采用基准测试数据circle-in-the-square测试了其学习能力,并与ARTMAP(adaptive resonance theory supervised predictive mapping)和BP(back propagation)神经网络进行了比较;然后采用标准的入侵检测测试数据集KDD'99 Data Set测试了其对大规模入侵的检测性能.通过与其他方法在相同数据集上的测试结果的比较表明,分布式学习算法同样具有较高的检测效率和较低的误报率.
|
关 键 词: | 入侵检测系统 网络行为 神经网络 分布式学习 |
收稿时间: | 2007-03-29 |
修稿时间: | 2007-03-29 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
| 点击此处可从《软件学报》浏览原始摘要信息 |
|
点击此处可从《软件学报》下载免费的PDF全文 |
|