首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的注塑制品材料选择方法
引用本文:施平. 基于神经网络的注塑制品材料选择方法[J]. 哈尔滨工业大学学报, 2005, 37(3): 296-298,343
作者姓名:施平
作者单位:哈尔滨工业大学,机械工程系,黑龙江,哈尔滨,150001
基金项目:黑龙江省自然科学基金资助项目
摘    要:分析了注塑制品的功能要求与注塑材料性能之间的相互关系,提出了一种基于BP神经网络的注塑材料选择方法,采用模糊数学方法表示对材料的选定度.通过训练样本使神经网络学习选材知识,利用测试样本对网络的性能进行验证.结果表明,此网络可以较好地解决注塑材料的选择问题,并且具有可扩展性, 新材料可以方便地添加到选材网络中.

关 键 词:神经网络  注塑制品  材料选择
文章编号:0367-6234(2005)03-0296-03
修稿时间:2003-10-08

A neural network approach to material selection for injection molded parts
SHI Ping. A neural network approach to material selection for injection molded parts[J]. Journal of Harbin Institute of Technology, 2005, 37(3): 296-298,343
Authors:SHI Ping
Affiliation:SHI Ping Dept. of Mechanical Engineering,Harbin Institute of Technology,Harbin 150001,China
Abstract:A BP neural network based plastic material selection methodology is developed by analyzing the relationship between performance requirements of injection molded part and properties of plastic material, and then the selection of the material is represented by a fuzzy mathematics method. The neural network was trained with material selection knowledge. Testing sample sets and injection molded parts were used to check the performance of the neural network. The results show that the neural network approach can be used efficiently for material selection for injection molded parts, the network has a good extensibility, and new materials can be easily added into it.
Keywords:neural network  injection molded part  material selection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号