首页 | 本学科首页   官方微博 | 高级检索  
     

基于分类回归树(CART)方法的统计解析模型的应用与研究
引用本文:张立彬,张其前,胥芳,杜奖胜. 基于分类回归树(CART)方法的统计解析模型的应用与研究[J]. 浙江工业大学学报, 2002, 30(4): 315-318
作者姓名:张立彬  张其前  胥芳  杜奖胜
作者单位:浙江工业大学机电一体化研究所,浙江杭州,310032
摘    要:分类回归树是基于统计理论的非参数的识别技术,它具有非常强大的统计解析功能,对输入数据和预测数据的要求可以是不完整的,或者是复杂的浮点数运算。而且,数据处理后的结果所包含的规则明白易懂。因此,分类回归树已成为对特征数据进行建立统计解析模型的一个很好的方法。本文首先介绍了一种构建分类回归树的算法,并对其剪枝策略进行了简单的探讨,最后用统计解析软件S-PLUS对一个应用实例进行了分析,给出结果。

关 键 词:CART 分类回归树 二叉树 S-PLUS 统计解析模型 剪枝策略 数据处理 建模方法
文章编号:1006-4303(2002)04-0315-04
修稿时间:2001-10-15

Research and application of the statistical models based on CART
ZHANG Li|bin,ZHANG Qi|qian,XU Fang,DU Jiang|sheng. Research and application of the statistical models based on CART[J]. Journal of Zhejiang University of Technology, 2002, 30(4): 315-318
Authors:ZHANG Li|bin  ZHANG Qi|qian  XU Fang  DU Jiang|sheng
Abstract:CART (Classification and Regression Tree) is a kind of non-parameter recognizing technology based on the statistical theory. The construction of CART has become a common basic method for building statistical models from simple feature data. CART is powerful because it can deal with incomplete data, multiple types of features floats both in input features and predicted features and the trees it produces often contain rules which are humanly readable. In this article, I first introduce some arithmetic applied to build a kind of CART, and then discuss the prune method of CART At last, I analyze an application example with the software S|PLUS.
Keywords:classification and regression tree  binary tree  S-PLUS  cross|validation estimate
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号